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SUMMARY

Semi-implicit, Godunov-type models are adapted for solving the two-dimensional, time-dependent, mass
transport equation on a geophysical scale. The method uses Van Leer’s MUSCL reconstruction in
conjunction with an explicit, predictor–corrector method to discretize and integrate the advection and
lateral di�usion portions of the governing equation to second-order spatial and temporal accuracy. Three
classical schemes are investigated for computing advection: Lax-Wendro�, Warming-Beam, and Fromm.
The proposed method uses second order, centred �nite di�erences to spatially discretize the di�usion
terms. In order to improve model stability and e�ciency, vertical di�usion is implicitly integrated
with the Crank–Nicolson method and implicit treatment of vertical di�usion in the predictor is also
examined. Semi-discrete and Von Neumann analyses are utilized to compare the stability as well as the
amplitude and phase accuracy of the proposed method with other explicit and semi-implicit schemes.
Some linear, two-dimensional examples are solved and predictions are compared with the analytical
solutions. Computational e�ort is also examined to illustrate the improved e�ciency of the proposed
model. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: semi-implicit; mass transport; Godunov; �nite volume; stability; accuracy

INTRODUCTION

Godunov-type �nite volume methods have become increasingly popular for modelling ad-
vection dominated mass transport. Such schemes use either cell-centred or cell-vertex values
of mass to construct upwind-biased advective �uxes at cell boundaries. Di�usion terms are
generally treated with space-centred �nite di�erences and the governing equation is typically
integrated in time with an explicit method. On unstructured grids, di�usion may be discretized
in a �nite volume framework [1], or a �nite element approach [2], while Zwart et al. [3]
developed an integrated space-time �nite volume discretization of time to conserve mass in
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moving boundary problems. Higher accuracy is obtained by reconstructing cell-average data
with polynomials prior to computing the advective �uxes and integrating the governing equa-
tion with an explicit, multi-step Runge–Kutta (RK) method. Flux or slope limiting is often
employed to suppress the development of spurious oscillations that accompanies higher spatial
accuracy.
These schemes are popular because of their mass conserving properties and ability to ac-

curately compute waves and sharp fronts that are free of numerical oscillations. Such models
are also e�cient, but because of their explicit character, they must obey the Courant condition
to maintain stability of the numerical solution. However, the vertical scale in rivers, estuar-
ies, and other geophysical environments is much smaller than the lateral scales. In addition,
mass transport may be dominated by turbulent mixing or chemical and biological reactions,
as opposed to advection. Under these conditions, the source or vertical di�usion terms may
become sti� and initiate numerical instability. The explicit treatment of such terms forces a
further reduction of the time step below that dictated by the Courant condition and hence
reduces model e�ciency. In such cases, it is desirable to treat di�usion and sti� source terms
implicitly to enhance model stability, while treating advection and non-sti� source terms ex-
plicitly to maintain good phase accuracy and minimize computational expense. There has been
much research and application of such semi-implicit schemes of which there are two general
approaches.
The �rst approach is to use splitting or fractional steps in which the sti� and non-sti�

portions of the equation are split and solved independently in a sequential manner. Leveque
and Yee [4] developed a split version of the semi-implicit MacCormack scheme for the one-
dimensional advection equation with a sti� source term. This scheme consists of a sti� term,
implicit integration step, a non-sti� step with the explicit MacCormack scheme, and a �nal
sti� implicit integration step.
The second approach is to simultaneously integrate sti� and non-sti� terms in a uni�ed

manner. Moin and Kim [5] used this approach to solve the Navier–Stokes equations by
applying the Crank–Nicholson method to the pressure and viscous terms and the explicit,
second-order Adams-Bashforth method to the remaining terms. Verwer et al. [6] solved the
advection–di�usion-reaction equation by discretizing the time derivative with a second-order
backward di�erence and implicitly integrating vertical di�usion and sti� reaction terms with
the �rst-order backward Euler method. Advection and non-sti� reaction terms were explic-
itly integrated by linearly extrapolating the concentration from the previous two time levels.
Knoth and Wolke [7] improved this model by treating advection with high order accurate RK
methods while Zhong [7] developed second and third-order schemes based on RK methods
that treat non-sti� terms explicitly and sti� terms implicitly. Bell et al. [9] developed a second
order, semi-implicit Godunov method for the Navier–Stokes equations that utilized an explicit
second-order RK method to integrate the advection terms and the Crank–Nicolson method to
integrate the viscous terms.
In this study, another form of the semi-implicit Godunov method is proposed. The method

proposed by Bell et al. [9] treated di�usion in all directions implicitly, which requires the
inversion of large sparse matrices in multidimensional problems. However, in geophysical
problems, the lateral di�usion terms are typically much smaller than the vertical terms and
therefore implicitly integrating all di�usion terms is unnecessarily expensive. In this paper, a
simpler semi-implicit Godunov method that is speci�cally tailored for geophysical applications
involving the transport of mass in rivers and coastal waters is proposed. This method treats
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SEMI-IMPLICIT GODUNOV SCHEME FOR MASS TRANSPORT 367

only vertical di�usion implicitly. Accuracy, stability, and computational demand are compared
with the fully explicit Godunov method as well as other semi-implicit Godunov methods.

SEMI-DISCRETE ANALYSIS

The proposed time stepping scheme is �rst analysed independently of the spatial discretization.
For this purpose, a simple test problem is examined of the form

dc
dt
=(�n + �s)c (1)

where �n and �s represent non-sti� and sti� complex source terms, respectively.
The proposed semi-implicit time scheme for Equation (1) is

cn+1 = cn +�t
(
�ncn+1=2 +

�s
2
(cn+1 + cn)

)
(2)

where n is the time level and cn+1=2 is a predictor value that is computed as

cn+1=2 = cn +
�t
2
[�ncn + �s(wcn+1=2 + w̃cn)] (3)

The term w varies from 0 for an explicit method to 1 for an implicit method and w̃=1−w.
If the following de�nitions are made,

x= �n�t= a+ bI

y=
�s�t
2

= |y|(cos�+ sin�I)
(4)

(where I =
√−1) then the semi-implicit integration of Equation (1) results in the following

expression for the ampli�cation factor G= cn+1=cn,

G=
(1 + |y| cos�+ aã− bb̃)(1− |y| cos�)

(1− |y| cos�)2 + (|y| sin�)2 +
|y| sin�+ bã+ ab̃

(1− |y| cos�)2 + (|y| sin�)2 I (5)

where

ã=
(1 + a

2 + w̃|y| cos�)(1− w|y| cos�)− ( b2 + w̃|y| sin�)w|y| sin�
(1− w|y| cos�)2 + (w|y| sin�)2

b̃=
(1 + a

2 + w̃|y| cos�)w|y| sin�− ( b2 + w̃|y| sin�)(1− w|y| cos�)
(1− w|y| cos�)2 + (w|y| sin�)2

(6)

The stability region is de�ned as the region in the complex plane where |G|61 for all y
and plotted as a function of x. The search space for y is de�ned as � + �6�6� − � and
|y|→∞. Figure 1 shows plots of the stability region for w=0 and di�erent values of � and
reveals that the stability region becomes smaller as � grows. Figure 1 also shows the stability
region for w¿ 1

2 , which does not vary with �. In this case, the stability region is much larger,
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Figure 1. Stability region for the proposed semi-implicit method.

which indicates the greater potential stability that accompanies the implicit calculation of the
predictor when coupled with a suitable spatial discretization.
For comparison, consider the Adams–Bashforth–Crank–Nicolson (ABCN) method proposed

by Moin and Kim [5] for Equation (1), which is

cn+1 = cn +
x
2
(3cn − cn−1) + y(cn+1 + cn) (7)

The resulting equation for G is

(1− y)G2 −
(
3x
2
+ y + 1

)
G +

x
2
=0 (8)

Substituting G=eI� where 06�62� into Equation (8) and solving for x yields

x=
2A(1− 3 cos �)− 6B sin �
(1− 3 cos �)2 + (3 sin �)2 +

2B(1− 3 cos �) + 6A sin �
(1− 3 cos �)2 + (3 sin �)2 I (9)

where

A= cos �− cos 2�+ |y|[cos (�+ �)− cos (�+ 2�)]
B= sin �− sin 2�+ |y|[sin (�+ �) + sin (�+ 2�)]

(10)

The stability region of this method is shown in Figure 2, which is seen to be smaller than
for the proposed method. In addition, the region grows much smaller as � increases.
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Figure 2. Stability region for the Adams–Bashforth–Crank–Nicolson (ABCN) method.

The additive, second-order Runge–Kutta (ASIRK-2) method developed by Zhong [8] and
applied to Equation (1) results in the following expression:

cn+1 =
(
1 +

( x2 − y
24 + 1)(x + y)

(1− y
4 )(1− y

3 )

)
cn (11)

and the resulting equation for G is

G=1+
AÃ+ BB̃
A2 + B2

+
AB̃− BÃ
A2 + B2

I (12)

where

A =
|y|2
12

cos 2�− 7|y|
12

cos�+ 1

B =
|y|2
12

sin 2�− 7|y|
12

sin�

Ã =
(
2 + a− |y|

12
cos�

)(
a
2
+

|y|
2
cos�

)
−
(
b− |y|

12
sin�

)(
b
2
+

|y|
2
sin�

)

B̃ =
(
a
2
+

|y|
2
cos�

)(
b− |y|

12
sin�

)
+

(
2 + a− |y|

12
cos�

)(
b
2
+

|y|
2
sin�

)
(13)
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Figure 3. Stability region for the additive, semi-implicit, Runge–Kutta (ASIRK-2) method.

Figure 3 illustrates the stability region of this method for varying �. Despite the fact that this
method was designed to maximize stability, its stability region still shrinks as � increases.

VON NEUMANN ANALYSIS AND NUMERICAL STABILITY

The proposed method is now applied to the linearized, two dimensional, advection–di�usion
equation for an arbitrary scalar, c,

@c
@t
+ u

@c
@x
+ v

@c
@y
=Dx

@2c
@x2

+Dy
@2c
@y2

(14)

where the �ow velocities u and v, as well as the turbulent di�usivities Dx and Dy, are constant.

Explicit method

First, a purely explicit Godunov-type scheme for solving Equation (14) is presented for the
sake of comparison with semi-implicit methods. Such a second-order accurate scheme for
solving the governing equation is

cn+1j; k = c
n
j; k − �x(cn+1=2j+1=2; k − cn+1=2j−1=2; k)− �y(cn+1=2j; k+1=2 − cn+1=2j; k−1=2)

+�x(c
n+1=2
j+1; k − 2cn+1=2j; k + cn+1=2j−1; k) + �y(c

n+1=2
j; k+1 − 2cn+1=2j; k + cn+1=2j; k−1) (15)
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where j and k denote the cell indices in the x and y directions, respectively, and n denotes
the time level. The fractional subscripts denote cell faces, while the Courant numbers are
de�ned as, �x= u�t=�x, �y= v�t=�y. The di�usion numbers are de�ned as �x=Dx�t=�x2,
and �y=Dy�t=�y2. Furthermore, �t is the time step and �x and �y are the grid spacings
in the x and y directions, respectively.
This scheme utilizes predictor values of c at the n+ 1

2 time level that are computed as

cn+1=2j; k = cnj; k − 1
2 [�x�xcj; k + �y�ycj; k − �x(cnj+1; k − 2cnj; k + cnj−1; k) (16)

−�y(cnj; k+1 − 2cnj; k + cnj; k−1)] (17)

The cell-average gradients of c, �xc and �yc are computed at time level n as

�xcj; k = �(cnj+1; k − cnj; k) + (1− �)(cnj; k − cnj−1; k)
�ycj; k = �(cnj; k+1 − cnj; k) + (1− �)(cnj; k − cnj; k−1)

(18)

where 06�61. Selecting �=1 yields the Lax-Wendro� (LW) method, �=0 yields the
Warming-Beam (WB) method and �= 1

2 results in the Fromm scheme. Non-linear averages,
termed slope limiters, are often used to prevent spurious oscillations from developing at dis-
continuities in c. Limiters typically use some combination of linear averages given by Equation
(18) in regions of smooth c, but preserve solution monotonicity by adding dissipation in re-
gions of steep gradients and ultimately becoming �rst-order accurate at solution extrema. Due
to their non-linear nature, limiters are not examined in this study.
The cell face values of c are taken as the upwind values that are reconstructed following

Van Leer’s Monotone Upstream Scheme for Conservation Laws (MUSCL) [10] as

cn+1=2j−1=2; k = c
n+1=2
j−1; k +

1
2 �xcj−1; k cn+1=2j; k−1=2 = c

n+1=2
j; k−1 +

1
2 �ycj; k−1

cn+1=2j+1=2; k = c
n+1=2
j; k + 1

2 �xcj; k cn+1=2j; k+1=2 = c
n+1=2
j; k + 1

2 �ycj; k
(19)

A Von Neumann analysis of this method is performed by assuming that a separation of
variables is valid and inserting the solution for a single harmonic of the form

cnj; k = g
neI(j�x+k�y) (20)

where �x and �y represent the harmonics in the x and y directions, respectively. Insertion of
such expressions for each cell value into the discrete equation yields the following expression
for the ampli�cation factor, G= gn+1=gn,

G= A0 + A1 cos �x + A2 cos �y + A3 cos 2�x + A4 cos 2�y

+A5 cos (�x − �y) + A6 cos (�x + �y) + [B1 sin �x + B2 sin �y

+B3 sin 2�x + B4 sin 2�y + B5 sin (�x − �y) + B6 sin (�x + �y)]I (21)
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with

A0 = 1 + 3
2 (�− 1)(�x + �y) + �x�y(1− 2�) +

1− 3�
2

(�2x + �
2
y)

− 2�x − 2�y + 3�2x + 4�x�y + 3�2y + (3�x�x + 2�x�y + 2�y�x + 3�y�y)(1− �)
A1 = �x[1 + (2�− 1)(�x + �y − 1)] + 2�x − 4�x�y − 4�2x

+ �x�x(5�− 4) + �x�y(�− 2) + 2�y�x(�− 1)
A2 = �y[1 + (2�− 1)(�x + �y − 1)] + 2�y − 4�x�y − 4�2y

+2�x�y(�− 1) + �y�x(�− 2) + �y�y(5�− 4)

A3 =
�x(1− �)

2
(�x + 2�x − 1) + �2x

A4 =
�y(1− �)

2
(�y + 2�y − 1) + �2y

A5 = (�x�y + �y�x)(1− �)− ��x�y + 2�x�y
A6 = (�x�y + �x�y + �y�x)(1− �) + 2�x�y

B1 = �x[(1− �)(�x + �y) + �x(2 + �) + (�y − 1)(2− �)]
B2 = �y[(1− �)(�x + �y) + (�x − 1)(2− �) + �y(2 + �)]

B3 =
�x
2
[(1− �x)(1− �)− 2�x]

B4 =
�y
2
[(1− �y)(1− �)− 2�y]

B5 = �y�x − �x�y
B6 = �x�y(�− 1)− �x�y − �y�x

(22)

For numerical stability, |G|61 must be true for all 06�x6� and 06�y6�. Numerical evalu-
ation of Equation (21) indicates that when �x= �y, �x=�y, and �x= �y=�, |G| is maximized
for all three values of � examined in this study. In this case, maintaining stability requires

�x + �y¡ 1
2 (23)

There are additional constraints on � that depend on the speci�c choice of �. Unfortunately,
the WB method is also unstable for �x=� over a wide range of �y as well as for the
symmetric cases �y=� and varying �x, which further reduces the maximum allowable �x and
�y. In this case the additional constraint is

�x + �y6min
(
1; 1− 2(�x + �y) +

√
1− 2(�x + �y)

)
(24)
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For the LW method, the following applies,

�x + �y6
√
2(�x + �y)[2(�x + �y)− 1] + 1 (25)

while for the Fromm method, the following must be obeyed,

�x + �y61 (26)

However, the LW and Fromm methods also become unstable for �x= �y=0. In this case
G becomes

G=1+ �(�x − �y)(�x − �y) (27)

Schemes with �¿0 are unstable unless �x ≈ �y or �x ≈�y. Otherwise if �x¡�y then �x¿�y
or if �x¿�y then �x¡�y must be maintained to preserve model stability. There are further
cases in which the LW and Fromm schemes may be unstable including �x=0 with a wide
range of �y¿0 and the symmetric case �y=0, �x¿0. These cases further restrict the stability
of these methods and are not considered further here.
In many engineering applications, the computational mesh may be re�ned in areas of rapidly

changing geometry in order to capture small scale �ow features and minimize truncation errors.
In addition, spatially and temporally varying di�usion coe�cients from auxiliary turbulence
models may be used to better model �ow physics. Such actions yield small mesh spacings and
possibly large local values of Dx and Dy and consequently, the constraint given by Equation
(23) can severely restrict the allowable size of �t required to preserve model stability. So
although the explicit method is computationally expedient since it does not require matrix
inversion, it is ine�cient in the sense that a very small timestep may be required to maintain
numerical stability. Therefore, the implicit treatment of di�usion is now investigated in an
e�ort to ease this constraint on the time step.

Semi-implicit method 1

Advection is treated as before and an explicit predictor is computed as given by Equation
(17). However, now di�usion is treated implicitly with the Crank–Nicholson method when
computing the corrector as

cn+1j; k − �x
2
(cn+1j+1; k − 2cn+1j; k + c

n+1
j−1; k)−

�y
2
(cn+1j; k+1 − 2cn+1j; k + c

n+1
j; k−1)

= cnj; k − �x(cn+1=2j+1=2; k − cn+1=2j−1=2; k)− �y(cn+1=2j; k+1=2 − cn+1=2j; k−1=2)

+
�x
2
(cnj+1; k − 2cnj; k + cnj−1; k) +

�y
2
(cnj;k+1 − 2cnj; k + cnj; k−1) (28)

This is similar to the model proposed by Bell et al. [9] except that they treated cell-average
gradients di�erently. When computing predictor values at a cell face, they used a centred
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di�erence (�= 1
2) to compute the gradient perpendicular to the face and an upwind di�erence

(�=0) to compute the gradient parallel to the face. However, this has no e�ect on the overall
stability of the linear model as discussed below.
A Von Neumann analysis of this method yields

[1 + �x(1− cos �x) + �y(1− cos �y)]G

=A0 + A1 cos �x + A2 cos �y + A3 cos 2�x + A4 cos 2�y

+A5 cos (�x − �y) + A6 cos (�x + �y) + [B1 sin �x + B2 sin �y
−A3 sin 2�x − A4 sin 2�y + B3 sin (�x − �y)− A6 sin (�x + �y)]I (29)

where

A0 = 1 +
3(�− 1)
2

(�x + �y) +
1− 3�
2

(�2x + �
2
y) + (1− 2�)�x�y

+�x

(
3�x
2
+ �y − 1

)
+ �y

(
�x +

3�y
2

− 1
)

A1 = (�x + �y − 1)[�x(2�− 1)− �x] + �x(1− �x − �y)
A2 = (�x + �y − 1)[�y(2�− 1)− �y] + �y(1− �x − �y)

A3 =
�x
2
[(�x − 1)(1− �) + �x] A4 =

�y
2
[(�y − 1)(1− �) + �y]

A5 = 1
2 (�x�y + �y�x)− ��x�y A6 = 1

2 (�x�y + �y�x) + (1− �)�x�y
B1 = �x[�− 2 + (1− �)(�x + �y) + �x + �y]
B2 = �y[�− 2 + (1− �)(�x + �y) + �x + �y]

B3 = 1
2(�y�x − �x�y)

(30)

For all three values of �, |G| is again greatest when �x= �y, �x=�y, and �x= �y=�,
which yields the constraint given by Equation (26) needed to preserve numerical stability
as �x; �y→∞. Equation (26) also applies to the method of Bell et al. [9] and is equivalent to
the stability requirement of the LW and Fromm schemes when applied to the pure advection
equation. However, it is much more restrictive than the corresponding requirement for the
WB scheme for pure advection, which is �x + �y62. The limit imposed by Equation (26)
arises because of the explicit treatment of di�usion in the predictor equation. As previously
mentioned, Minion [11] proposed a modi�cation of the Bell et al. model to obtain the stability
limit,

�x; �y61 (31)

This modi�cation requires the computation of an additional pseudo concentration �eld at the
cell faces that is used to compute the predictor advection terms perpendicular to the cell
faces.
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Although this approach is conditionally stable for �x; �y→∞, the implicit treatment of
di�usion in both dimensions requires the inversion of a pentadiagonal matrix in order to
obtain the solution of the governing equation. This is much more computationally expensive
than inverting a tridiagonal matrix as is needed in one-dimensional problems. The situation
becomes worse in three dimensions or solving the governing equation on a curvilinear grid. In
geophysical applications, the vertical dimension is much smaller than the horizontal dimensions
and as a result, the vertical grid spacing is typically much smaller than the horizontal grid
spacing. The previous analysis showed that the explicit treatment of vertical di�usion, in
combination with a small grid spacing, requires the use of a small time step to preserve
numerical stability. Therefore, a more e�cient method might be to treat vertical di�usion
implicitly to obtain better numerical stability and treat horizontal di�usion explicitly to avoid
inverting a pentadiagonal matrix and therefore improve computational e�ciency. This method
is now investigated.

Semi-implicit method 2

Assume x is a horizontal direction and di�usion in this direction is treated explicitly, while
y is the vertical direction and di�usion is treated implicitly in this direction. The predictor is
now computed as

cn+1=2j; k − w�y
2
(cn+1=2j; k+1 − 2cn+1=2j; k + cn+1=2j; k−1)

= cnj; k − 1
2 (�x�xcj; k + �y�ycj; k)

+
�x
2
(cnj+1;k − 2cnj; k + cnj−1;k) +

w̃�y
2
(cnj;k+1 − 2cnj; k + cnj;k−1) (32)

The corrector is

cn+1j; k − �y
2
(cn+1j; k+1 − 2cn+1j; k + c

n+1
j; k−1)

= cnj; k − �x(cn+1=2j+1=2; k − cn+1=2j−1=2; k)− �y(cn+1=2j; k+1=2 − cn+1=2j; k−1=2)

+�x(c
n+1=2
j+1; k − 2cn+1=2j; k + cn+1=2j−1; k) +

�y
2
(cnj; k+1 − 2cnj; k + cnj; k−1) (33)

A Von Neumann analysis of this method results in the following:

[1 + �y(1− cos �y)]G= A0 + A1 cos �x + A2 cos �y + A3 cos 2�x

+A4 cos 2�y + A5 sin �x + A6 sin �y + [B0 + B1 sin �x + B2 sin �y

−A3 sin 2�x − A4 sin 2�y + B3 cos �x + B4 cos �y]I (34)
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with

A0 = 1−
(
1− 3�
2

+ Ã
)
(�x + �y)− 2Ã�x − �y

A1 = �x(1− 2�) + (�x + 2�x)Ã A2 = �y(1− 2�+ Ã) + �y

A3 =
�x
2
(�− 1) A4 =

�y
2
(�− 1) A5 = �xB̃ A6 = �yB̃

B0 = −B̃(�x + �y + 2�x) B1 = �x(�− Ã− 1) B2 = �y(�− Ã− 1)
B3 = B̃(�x + 2�x) B4 = B̃�y

Ã =
1+ �̃(�x + �y)− �x − w̃�y + [�x − �x�̃] cos �x + [w̃�y − �y�̃] cos �y

1 + w�y(1− cos �y)

B̃ = − �x sin �x + �y sin �y
2[1 + w�y(1− cos �y)]

(35)

where �̃=�− 1
2 .

For w=0 and all �, the maximum value of |G| occurs when �x= �y and �x= �y=�, which
results in the following stability constraints:

�x ¡ 1
2 (36)

�x + �y6 1− 2�x (37)

and for �x¿0, Equation (37) is more restrictive than the method 1 constraint given by Equa-
tion (26).
For w=1 and all �, the maximum value of |G| also occurs when �x= �y and �x= �y=�,

which results in the stability constraint given by Equation (26). However, this model is also
unstable for other cases unless Equation (37) is obeyed. Therefore, treating di�usion implicitly
in the predictor does not yield as much of an advantage as implicitly integrating sti� source
terms as previously illustrated.

PHASE AND AMPLITUDE ERRORS

When modelling mass transport in rivers, lakes, and coastal regions, the lateral extent of the
domain may be a kilometre or more, while the water depth is typically several metres or less.
Model resolution is usually limited by computational resources to a lateral spacing on the
order 100 m or more and a vertical spacing of a fraction of a meter or more. Typical lateral
�ow velocities in such shallow water bodies are primarily on the order of 1m=s or less while
vertical velocities are often two orders of magnitude smaller or even negligible. Therefore, it is
reasonable to assume �x= �y. The vertical turbulent di�usivity varies due to bed roughness and
has been estimated in the range of 0.0001–0:001m2/s, while the lateral di�usivity is typically
2–10 times as large [14]. Therefore a reasonable assumption is that �y=100�x. However,
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Figure 4. 	a for the LW methods for �x=0:01 and �y=0:1.

under this assumption, methods 1 and 2 yield virtually identical predictions so therefore it is
assumed that �y=10�x. Furthermore, it is assumed that �x= �y=0:4, �x=0:01, �y=0:1, and
for simplicity, �x= �y. The relative amplitude error is de�ned as the ratio of the numerical
to the exact solution amplitudes, i.e.

	a =
|G|

e−0:11�2
(38)

while the relative phase error is similarly de�ned as the ratio of the numerical and exact
phases,

	p =
tan−1 B=A
0:8�

(39)

For this example, the grid Peclet number in the x direction, Pex= �x=�x=40 while in the
y direction, Pey=4. For Pey ≈ 100, advection dominates the solution and the treatment of
vertical di�usion does not a�ect the accuracy of the solution. Figure 4 shows a plot of 	a
for the di�erent LW methods, which reveals that all of the methods perform similarly, but
the semi-implicit methods are more accurate than the explicit method for all but the largest
�. Figure 5 shows the corresponding plots of 	p and illustrates that the explicit method has
the least error for small � and possesses a leading phase error for larger �. The semi-implicit
methods have a lagging error for all but the largest values of � and method 2 with w=0 has
the smallest error of all the semi-implicit schemes.
Figures 6 and 7 show plots of 	a and 	p for the di�erent variations of the WB method. All of

the methods perform similarly and overpredict modes and have a leading phase error for large
�. Once again methods 1 and 2 with w=0 perform similarly. Figures 8 and 9 show plots of
	a and 	p for the Fromm methods. These models are a blend of the LW and WB methods and
their errors re�ect this. In this case, the explicit method is slightly more dissipative than the
semi-implicit methods and has a leading phase error for large �. The semi-implicit methods
also exhibit a leading phase error, but to a much lesser degree.
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Figure 5. 	p for the LW methods for �x=0:01 and �y=0:1.
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Figure 6. 	a for the WB methods for �x=0:01 and �y=0:1.

Although methods 1 and 2 are conditionally stable for large �y, they are not necessarily
accurate. To illustrate this, the relative amplitude and phase errors are computed with the
same parameters as the previous case except now �x=0 and �y=0:5 are used. In this case,
methods 1 and 2 with w=0 are identical and therefore results for method 2 only are presented.
Figures 10 and 11 show 	a and 	p for the LW versions of method 2 with w=0 and w=1. Both
schemes greatly overpredict the solution and possess a severe lagging error for increasing �.
Figures 12 and 13show 	a and 	p for the WB models, which demonstrate that they overpredict
the solution and have a leading phase error for larger �. The amplitude and phase errors for
the Fromm models are shown in Figures 14 and 15. Both versions overpredict the solution,
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Figure 7. 	p for the WB methods for �x=0:01 and �y=0:1.
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Figure 8. 	a for the Fromm methods for �x=0:01 and �y=0:1.

but the version with w=0 has a lagging phase error and the version with w=1 has a leading
phase error. Fortunately, for large values of �y both methods are still dissipative (|G| ¡ 1)
and therefore stable.

COMPUTATIONAL EXAMPLES

Three idealized problems are now solved by the explicit and semi-implicit versions of the
Fromm models in order to compare their predictions with analytical solutions. Only method 2
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Figure 9. 	p for the Fromm methods for �x=0:01 and �y=0:1.
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Figure 10. 	a for the semi-implicit LW methods for �x=0 and �y=0:5.

with w=0 is utilized in these computations. As previously mentioned, method 1 requires the
inversion of a pentadiagonal matrix, which is accomplished by using a preconditioned bicon-
jugate gradient scheme [13]. An ADI method would be computationally cheaper, but would
sacri�ce second-order time accuracy when coupled with the Crank–Nicolson method in each
dimension [14]. Method 2 requires the inversion of a tridiagonal matrix that is accomplished
with the standard Thomas Algorithm. In the �rst two problems, the domain consists of a
1000m long channel with a 10m depth. The �rst problem is designed to mimic a geophysical
�ow in which vertical advection is negligible and the chosen parameters are u=0:5m=s, v=0,
Dx=0:01m2/s, and Dy=0:001m2/s. At the top and bottom boundaries, c=0 is enforced, while
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Figure 11. 	p for the semi-implicit LW methods for �x=0 and �y=0:5.
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Figure 12. 	a for the semi-implicit WB methods for �x=0 and �y=0:5.

at the right boundary @c=@x=0 and at the left boundary the following is speci�ed:

c(0; y)=
y
25
(10− y) (40)

The models are run with varying grid resolution as shown in Table I to obtain a steady-state
solution that is compared to the analytical result. All of the models yielded nearly identical
solutions for all three problems. Figure 16 shows the convergence of the predictions to the
analytical solution along y=5 m for a varying number of computational cells, N . Figure 17
shows the corresponding pro�les for x=500 m.
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Figure 13. 	p for the semi-implicit WB methods for �x=0 and �y=0:5.

� a

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.00 0.79 1.57 2.36 3.14

method 2(   =0)

method 2(   =1)

�

w

w

Figure 14. 	a for the semi-implicit Fromm methods for �x=0 and �y=0:5.

The second problem is designed to illustrate the case where c represents turbulence kinetic
energy or its dissipation rate. In such a case, c=0 is enforced at the surface and c at the
bottom is �xed to some positive value based on the local shear stress. In this case, it is
assumed to be,

c(x; 0)= sin2
�x
1000

(41)
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Figure 15. 	p for the semi-implicit Fromm methods for �x=0 and �y=0:5.

Table I. Comparison of computational e�ort for the semi-implicit Fromm methods relative to the
explicit Fromm method.

Grid �x �y �t �x �x �y

1 100 1 100 0.5 0.0001 0.1
2 50 0.5 50 0.5 0.0002 0.2
3 25 0.25 25 0.5 0.0004 0.4
4 12.5 0.125 7.1 0.3 0.00046 0.45

Also, at the left and right boundaries, c=0 is speci�ed. Lateral advection is neglected to facili-
tate comparison with the analytical solution and the parameters are now u=0 and v=0:01m=s,
with Dx and Dy the same as before. Table II shows the various grid resolutions used in this
example. Figure 18 shows the predictions and analytical solution along y=5m for a varying
number of computational cells. Figure 19 shows the corresponding plots along x=500 m. In
this case, a boundary layer exists near the surface and a sharp gradient of c in the y direction
exists.
The third example is an unsteady problem in which a mass of tracer equal to C0�x�y

(where C0 = 1 is the initial concentration) is released from the computational cell located
100 m from the left boundary and 1 m from the bottom. In this case, the domain is 2000 m
long and 20 m deep and at the left and right boundaries @c=@x=0 is enforced, while at the
top and bottom @c=@y=0 is applied. The parameters are now u=0:5 m=s and v=0:005 m=s,
with Dx and Dy the same as before and Table III shows the grid parameters for this problem.
Figure 20 shows the analytical solution at t=2000s, while Figure 21 shows the corresponding
numerical solution.
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Figure 16. Comparison of numerical predictions to analytical solution for test problem 1 along y=5m.
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Figure 17. Comparison of numerical predictions to analytical solution for test problem 1 along x=500m.

Figure 22 shows the L2 error norm for the models as a function of the number of compu-
tational cells, N , which is computed as

L2 =

√
1
N

N∑
i=1
(cexact − cpredict)2 (42)
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Table II. Comparison of computational e�ort for the semi-implicit Fromm methods relative to the
explicit Fromm method.

Grid �x �y �t �x �x �y

1 100 1 100 0.5 0.00005 0.05
2 50 0.5 50 0.5 0.0001 0.1
3 25 0.25 25 0.5 0.0002 0.2
4 12.5 0.125 6.25 0.5 0.0004 0.4
5 6.25 0.0625 1.9 0.3 0.0005 0.49
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Figure 18. Comparison of numerical predictions to analytical solution for test problem 2 along y=5m.

This �gure reveals that the methods converged at a constant rate until roundo� errors and
boundary e�ects reduced the rate. The model predictions were less accurate in case 2 than
case 1 because of the severe boundary layer at the surface, which caused an abrupt variation
of c and hindered convergence. In addition, there is more error in case 3 than in case 1 due
to the dominance of advection in the x direction that causes a sharp gradient in c at the front
of the plume.
Although these models yield nearly identical solutions, the corresponding computational

e�ort is quite di�erent. For coarse grids where the limiting timestep is governed by the
Courant condition, Equation (26), the explicit method is the fastest. However, as the grid is
re�ned, explicit model stability becomes governed by di�usion, Equation (23). The ratio of
the di�usion limiting timestep, �td, to the Courant limiting timestep, �tC, can provide a
rough delineation of when this occurs,

�td
�tC

=
u�y
2Dy

�y
�x

(43)
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Figure 19. Comparison of numerical predictions to analytical solution for test problem 1 along x=500m.

Table III. Comparison of computational e�ort for the semi-implicit Fromm methods relative to
the explicit Fromm method.

Grid �x �y �t �x �y �x �y

1 50 0.5 33.33 0.33 0.33 0.00013 0.13
2 25 0.25 16.67 0.33 0.33 0.00027 0.27
3 12.5 0.125 6.67 0.267 0.267 0.00043 0.43
4 6.25 0.0625 1.67 0.133 0.133 0.00043 0.43

When this ratio is equal to one, then further reduction of �y will force the explicit model to
use a smaller timestep than the semi-implicit models to maintain stability. For the problems
considered here with u=0:5 m=s, Dy=0:001 m2/s, and �y=�x=0:01, then �y must be less
than approximately 0:4m before the semi-implicit methods gain an advantage over the explicit
method. Furthermore, the ratio given in Equation (43) can be used to crudely estimate the
relative computational e�ort of method 2 versus the explicit method. For example, for the
given parameters and �y=0:0625 m, method 2 could use a time step 6.4 times as large as
the explicit method, which can be roughly translated to 84 per cent less CPU time. This is
further illustrated for the �nest grid simulations of the three test problems. Table IV shows
the relative CPU time, which is the CPU time divided by the explicit method CPU time,
for the �nest grid simulation of each problem. This reveals that method 1 is 5–10 times
as costly to use as the explicit method, while method 2 is only approximately 1.3 times
as costly when using the same �t. However, methods 1 and 2 are not limited by vertical
di�usion and can therefore use a larger �t and still remain stable. For example, in the �rst

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:365–389



SEMI-IMPLICIT GODUNOV SCHEME FOR MASS TRANSPORT 387

0

0.001

0.002

0.003

C

0

500

1000

1500

2000

X

0
10

20Y

Figure 20. Analytical solution to test problem at t=2000 s.
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Figure 21. Numerical solution to test problem at t=2000 s.

problem, method 1 using �t=12:5s still required 6.4 times as much CPU time as the explicit
method. However, using this timestep, method 2 required only 0.74 times as much CPU time
as the explicit model or a 26 per cent reduction. An even larger �t could be employed for
additional e�ciency. In problem 2, using �t=3:125s, method 2 required 0.81 times as much
CPU time, a 19 per cent reduction. Finally, in the third case, method 2 using �t=4:1675 s
required 0.52 times as much CPU time as the explicit model or a 48 per cent reduction. In
all three cases, the use of a larger timestep with the semi-implicit methods had a negligible
impact on accuracy.
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Table IV. Comparison of computational e�ort for the semi-implicit methods relative
to the explicit method.

Case Method 1 Method 2

1 10.1 1.38
2 10.56 1.32
3 5.38 1.38

SUMMARY AND CONCLUSIONS

The semi-discrete analysis of the proposed semi-implicit method illustrates the bene�t of
treating sti� source terms implicitly when computing the predictor as well as the corrector
solutions. This bene�t consists of a much enlarged stability region for all � that is much larger
than the corresponding regions of the ABCN and ASIRK-2 semi-implicit methods.
The Von Neumann analysis presented in this paper reveals that for a low Pe (less than 100),

the choice of time integration technique for the di�usion terms has a modest e�ect on the
amplitude and phase accuracy of the numerical solution. The LW schemes showed the most
sensitivity, while the WB schemes were the least sensitive. Also, for the test case presented,
the Fromm and LW semi-implicit schemes are more accurate than the explicit version, while
the opposite is true for the WB method. For a Pe on the order of 100 or greater, advection
dominates the solution and the treatment of di�usion makes no signi�cant di�erence in the
overall accuracy of the models.
However, the time integration choice does a�ect the e�ciency and robustness of the nu-

merical model. The explicit treatment of di�usion requires the use of a smaller timestep than
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the semi-implicit methods when the ratio given by Equation (43) is less than one. The im-
plicit integration of di�usion in all spatial directions eliminates this constraint, but requires
the inversion of large, sparse, matrices that are computationally expensive to perform. In the
test problems presented here, this method still required several times the computational e�ort
of the explicit model despite its ability to use larger timesteps. Only in cases with a large
�x is this method justi�ed. Selectively treating vertical di�usion implicitly is an attractive
compromise that enhances the stability and robustness of the model, limits matrix inversion
to tridiagonal matrices, and does not compromise the accuracy of the model. In the test prob-
lems, this method required 20–50 per cent less CPU time than the explicit method. It was also
discovered that unlike the treatment of sti� source terms, implicitly treating vertical di�usion
when computing the predictor does not signi�cantly enhance the overall stability of the model.
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